Sabtu, 30 Juni 2012

Senyawa alifatik

Dalam kimia, khususnya kimia organik, senyawa yang terbentuk dari ikatan karbon dan hidrogen terbagi menjadi dua bagian, yaitu senyawa siklik dan senyawa alifatik.
Alifatik (bahasa Yunani: aleiphar, berarti minyak atau lemak) adalah senyawa organik yang tidak mempunyai gugus fenil (bahasa Inggris: aromatic ring).Senyawa alifatik dapat berupa:
atau:
Pada senyawa alifatik, atom karbon dapat saling mengikat dalam bentuk rantai lurus bercabang maupun bercabang, atau cincin non aromatik (alisiklik), dengan ikatan tunggal, ganda dan tiga ikatan kovalen. Ikatan kovalen dapat mengikat unsur lain selain hidrogen, antara lain oksigen, nitrogen, belerang, klor.
Pada umumnya senyawa alifatik mudah terbakar (bahasa Inggris: flammable) sehingga sering digunakan sebagai bahan bakar, seperti metana untuk bahan bakar kompor dan asetilen untuk pengelasan (bahasa Inggris: welding).

Contoh senyawa alifatik

Kelompok terpenting dalam senyawa alifatik adalah:
  • n-, Iso- dan Siklo-Alkana (Senyawa hidrokarbon jenuh)
  • n-, Iso- dan Siklo-Alkena dan -Alkuna (Senyawa hidrokarbon tak jenuh).
Contoh Important examples of low-molecular aliphatic compounds can be found in the list below (sorted by the number of carbon-atoms):
Rumus kimia Nama Nomor CAS Rumus struktural Klasifikasi kimia
CH4 Metana 74-82-8 Methane-2D-stereo.svg Alkana
C2H2 Etina 74-86-2 Ethyne-2D-flat.png Alkuna
C2H4 Etena 74-85-1 Ethene structural.svg Alkena
C2H6 Etana 74-84-0 Ethan Lewis.svg Alkana
C3H4 Propuna 74-99-7 Propyne-2D-flat.png Alkuna
C3H6 Propena - Propen21.PNG Alkene
C3H8 Propana - Propane-2D-flat.png Alkane
C4H6 1,2-Butadiena 590-19-2 Buta-1,2-dien.svg Diena
C4H6 1-Butuna - Ethylacetylene.png Alkuna
C4H8 Butena - e.g. Buten21.PNG Alkena
C4H10 Butana - Butane-2D-flat.png Alkana
C6H10 Sikloheksana 110-83-8 Cyclohexen - Cyclohexene.svg Sikloalkena
C5H12 n-pentana 109-66-0 Pentan Skelett.svg Alkana
C7H14 Sikloheptana 291-64-5 Cycloheptane.svg Sikloalkana
C7H14 Metilsikloheksana 108-87-2 Methylcyclohexane.png Sikloheksana
C8H8 Oktana 277-10-1 Cuban.svg Siklobutana
C9H20 Nonana 111-84-2 Nonan Skelett.svg Alkana
C10H12 Disiklopentadiena 77-73-6 Di-Cyclopentadiene ENDO & EXO V.2.svg Diena, Sikloalkena
C10H16 Felandrena 99-83-2 Alpha-phellandren.pngBeta-phellandren.png Terpena, Diena Sikloalkena
C10H16 α-Terpinena 99-86-5 Alpha-Terpinene.svg Terpena, Sikloalkena, Diena
C10H16 Limonena 5989-27-5 (R)-Limonen.svg(S)-Limonen.svg Terpena, Diena, Cycloalkena
C11H24 Undecana 1120-21-4 Undecan Skelett.svg Alkana
C30H50 Squalena 111-02-4 Squalene.svg Terpena, Poliena
C2nH4n Polietilena 9002-88-4 Polyethylene-repeat-2D-flat.png Alkana



http://id.wikipedia.org/wiki/Senyawa_alifatik
   

Senin, 25 Juni 2012

Nitrilase adalah salah satu jenis enzim penghidrolisa senyawa nitril. Substrat utama dari enzim ini adalah indol-3-asetonitril dan senyawa ini kemudian akan diubah menjadi indol-3-asam asetat. Nitril (RCN) terdapat di alam dalam jumlah yang sangat besar dalam bentuk sianoglikosida.Senyawa ini banyak digunakan sebagai pembentuk polimer dan senyawa kimia lainnya. Oleh karena itu, enzim nitrilase menjadi salah satu enzim yang banyak dikembangkan saat ini. Enzim ini dapat ditemukan pada tanaman, hewan, dan fungi.
Enzim nitrilase dapat dikelompokkan menjadi 3 golongan berdasarkan spesifitas substratnya, yaitu alifatik, aromatik, dan arilaceto-nitrilase. Enzim-enzim ini tidak membutuhkan ion logam atau gugus prostetik sebagai kofaktornya.Aktivitas nitrilase dapat dianalisis dengan menggunakan high performance liquid chromatography (HPLC) dan infrared spectroscopy (FTIR)



http://id.wikipedia.org/wiki/Nitrilase



Kamis, 14 Juni 2012

poliamida ( tugas kelompok 4)

Nylon merupakan sebutan generik untuk keluarga polimer sintetik yang dikenal umum sebagai poliamida , pertama diproduksi pada 28 Februari 1935 oleh Wallace Carothers di DuPont fasilitas penelitian s 'di Stasiun Percobaan DuPont .Nylon adalah salah satu polimer yang paling umum digunakan.
Nylon adalah termoplastik bahan halus, pertama kali digunakan secara komersial dalam nilon a- berbulu sikat gigi (1938), diikuti lebih terkenal dengan perempuan stoking ("nylons"; 1940). Ini terbuat dari unit pengulangan dihubungkan oleh amida obligasi dan sering disebut sebagai poliamida (PA). Nylon adalah orang pertama yang secara komersial sukses polimer sintetik. Ada dua metode umum pembuatan nilon untuk aplikasi serat. Dalam satu pendekatan, molekul dengan asam (COOH) kelompok pada setiap akhir yang bereaksi dengan molekul yang mengandung amina (NH 2) kelompok pada setiap akhir. Nilon yang dihasilkan diberi nama berdasarkan jumlah atom karbon memisahkan dua kelompok asam dan dua amina. Ini terbentuk menjadi monomer dari antara berat molekul , yang kemudian bereaksi untuk bentuk panjang polimer rantai.
Nylon dimaksudkan untuk menjadi pengganti sintetis untuk sutra dan digantikan untuk itu dalam banyak produk setelah sutra menjadi langka selama Perang Dunia II .Ia menggantikan sutra dalam aplikasi militer seperti parasut dan rompi antipeluru , dan digunakan dalam berbagai jenis ban kendaraan. 
2. Pembuatan Nylon
 5,10 Nylon, terbuat dari diamina pentamethylene dan asam sebasat , dipelajari oleh Carothers bahkan sebelum nilon 6,6 dan memiliki sifat unggul, tetapi lebih mahal untuk membuatnya. Sesuai dengan konvensi penamaan, "nilon 6,12" (N-6, 12) atau "PA-6, 12" adalah kopolimer dari diamina 6C dan diacid 12C. Demikian pula untuk N-5, 10 N-6, 11; N-10, 12, dll nilon lainnya termasuk asam dikarboksilat kopolimerisasi produk diamina / yang tidak didasarkan pada monomer yang tercantum di atas.
Sebagai contoh, beberapa aromatik nilon yang dipolimerisasi dengan penambahan diacids seperti asam tereftalat (→ Kevlar Twaron ) atau asam isophthalic (→ Nomex ), lebih umumnya terkait dengan poliester. Ada kopolimer dari N-6, 6/N6; kopolimer N-6, 6/N-6/N-12, dan lain-lain. Karena cara poliamida terbentuk, nilon sepertinya akan terbatas pada bercabang, rantai lurus. Tapi "bintang" nilon bercabang dapat dihasilkan oleh kondensasi asam dikarboksilat dengan Poliamina memiliki tiga atau lebih kelompok amino .
Reaksi umumnya adalah:
     
Sebuah molekul air dilepaskan dan nilon terbentuk. Sifat ini ditentukan oleh kelompok-kelompok R dan R 'di monomer.
Dalam nilon 6,6, R = 4C dan R '= 6C alkana , tetapi juga harus mencakup dua karboksil karbon di diacid untuk mendapatkan jumlah itu menyumbangkan ke rantai. Dalam Kevlar , baik R dan R 'adalah benzena cincin. 
Konsep produksi Nylon
Pendekatan pertama: menggabungkan molekul dengan asam (COOH) kelompok pada setiap akhir yang bereaksi dengan dua bahan kimia yang mengandung amina (NH 2) kelompok pada setiap akhir.
Proses ini menciptakan nilon 6,6 , terbuat dari diamina heksametilena dengan enam atom karbon dan asam adipat. Pendekatan kedua: gabungan memiliki asam di satu ujung dan amina pada yang lain dan dipolimerisasi membentuk rantai dengan unit berulang (-NH-[CH 2] n-CO-) x. Dengan kata lain, nilon 6 dibuat dari bahan kaprolaktam enam-karbon tunggal yang disebut Caprolactam. Dalam persamaan ini, jika n = 5, maka nilon 6 adalah nama yang diberikan (mungkin juga disebut sebagai polimer).
Ciri karakteristik dari nilon 6,6 termasuk:
  • Lipatan dan kusut bisa panas-set pada suhu yang lebih tinggi
  • Lebih kompak struktur molekul
  • Pelapukan yang lebih baik sifat; tahan sinar matahari lebih baik
  • Lebih lembut "Tangan"
  • Titik lebur yang lebih tinggi (256 ° C)
  • Superior colorfastness
  • Excellent abrasi perlawanan
Di sisi lain, nilon 6 mudah pewarna, lebih mudah memudar, tetapi memiliki dampak resistensi yang lebih tinggi, daya serap kelembaban yang lebih cepat, elastisitas lebih besar dan pemulihan elastis.

3. Sifat Nylon

  • nilon memiliki kemampuan menjadi sangat berkilau, semilustrous atau membosankan.
. Daya tahan: serat tinggi ketahanan digunakan untuk sabuk pengaman, kabel ban, kain balistik dan penggunaan lainnya.
  • Perpanjangan Tinggi
  • Excellent abrasi perlawanan
  • Sangat ulet (kain nilon yang panas-set)
  • Membuka jalan untuk pakaian yang mudah perawatan
  • Tinggi resistensi terhadap serangga, jamur, hewan, serta cetakan, jamur, busuk dan banyak bahan kimia
  • Digunakan dalam karpet dan stoking nilon
  • Mencair bukan terbakar
  • Digunakan dalam banyak aplikasi militer
  • Bagus tertentu kekuatan
  • Transparan di bawah sinar inframerah (-12dB)
Semua nilon rentan terhadap hidrolisis, terutama oleh asam kuat , reaksi dasarnya kebalikan dari reaksi sintetis yang ditunjukkan di atas. Berat molekul produk nilon sehingga menyerang tetes cepat, dan retak membentuk cepat di zona terpengaruh. Semua Turunan dari nilon (seperti nilon 6) dipengaruhi lebih dari anggota yang lebih tinggi seperti nilon 12. Ini berarti bahwa bagian-bagian nilon tidak dapat digunakan dalam kontak dengan asam sulfat misalnya, seperti elektrolit yang digunakan dalam baterai timbal-asam . Ketika sedang dibentuk, nilon harus dikeringkan untuk mencegah hidrolisis dalam barel mesin cetak karena air pada suhu tinggi juga dapat menurunkan polimer.
4. Penggunaan Nylon
Nylon dapat digunakan sebagai bahan matriks dalam material komposit , dengan penguat serat seperti kaca atau serat karbon, dan memiliki lebih tinggi kepadatan dari nilon murni.
komposit termoplastik tersebut (25% serat gelas) yang sering digunakan dalam komponen mobil sebelah mesin, seperti manifold intake, dimana ketahanan panas yang baik dari bahan-bahan tersebut membuat mereka pesaing layak untuk logam.
Beberapa Penggunaan Utama Serat Nylon :
  • Pakaian: Blus, gaun, pakaian yayasan, kaus kaki, lingerie, pakaian dalam, jas hujan, pakaian ski, windbreakers, pakaian renang, dan siklus pakai
  • Perabotan Rumah: Seprei, karpet, tirai, upholstery
  • Kegunaan: Ban kabel, selang, ban dan kursi ikat pinggang, parasut, string raket, tali dan jaring, kantong tidur, terpal, tenda, benang, monofilamen pancing, benang gigi
5. Nylon dan Lingkungan

Insenerasi dan daur ulang

Berbagai nilon pecah akan membentuk asap api berbahaya, dan asap beracun atau abu, biasanya mengandung hidrogen sianida . membakar nilon untuk memulihkan energi tinggi yang digunakan untuk membuat mereka biasanya mahal, sehingga sebagian besar nilon mencapai pembuangan sampah, busuk sangat lambat . Beberapa cara daur ulang dilakukan pada nilon, biasanya dengan membuat pelet untuk digunakan kembali dalam industri ini, namun hal ini dilakukan pada skala yang lebih rendah.